Renewable Energy

In the past century, it has been seen that the consumption of non-renewable sources of energy has caused more environmental damage than any other human activity. Electricity generated from fossil fuels such as coal and crude oil has led to high concentrations of harmful gases in the atmosphere. This has in turn led to many problems being faced today such as ozone depletion and global warming. Vehicular pollution has also been a major problem.

Therefore, alternative sources of energy have become very important and relevant to today’s world. These sources, such as the sun and wind, can never be exhausted and therefore are called renewable. They cause less emissions and are available locally. Their use can, to a large extent, reduce chemical, radioactive, and thermal pollution. They stand out as a viable source of clean and limitless energy. These are also known as non-conventional sources of energy. Most of the renewable sources of energy are fairly non-polluting and considered clean though biomass, a renewable source, is a major polluter indoors.

Wind Power

Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases dramatically up to the maximum output for the particular turbine. Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favorable sites.

Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This could require wind turbines to be installed over large areas, particularly in areas of higher wind resources. Offshore resources experience average wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy.

Hydro Power

Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy.

There are many forms of water energy:

  • Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams.
  • Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS).
  • Run-of-the-river hydroelectricity systems derive kinetic energy from rivers and oceans without the creation of a large reservoir.

Solar Energy

Solar energy is the energy derived from the sun through the form of solar radiation. Solar powered electrical generation relies on photovoltaics and heat engines. A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

Bio Fuel

Biofuels include a wide range of fuels which are derived from biomass. The term covers solid biomass, liquid fuels and various biogases. Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas.

Geothermal Energy

Geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface.